(4x^2)+(10x)+1=0

Simple and best practice solution for (4x^2)+(10x)+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2)+(10x)+1=0 equation:



(4x^2)+(10x)+1=0
a = 4; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·4·1
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{21}}{2*4}=\frac{-10-2\sqrt{21}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{21}}{2*4}=\frac{-10+2\sqrt{21}}{8} $

See similar equations:

| 9-3x+5=x*3-2-20x | | 2x=1800/x | | x/12-2=-9 | | 36+12y=19y+40 | | −65​ x=−310​ | | 2x-34=32 | | x+6/5=12/5 | | 4z^2+31-24z=0 | | 36+12y=10y+16 | | 22r+11r=66 | | 2.89=8.5b | | 5x=32-12 | | 8x-5=2x+-15 | | 3x-78=27 | | 21x-50=34 | | 16+5x=30 | | (6x+16)=(4x+4) | | 2420+x(230.35)=5463.50 | | u/2+12=20 | | f23=22 | | x^2+x-230=0 | | 3(x-1)-2=19 | | x-8=3x+32 | | 7x−11=38 | | d4=13 | | 6x=10x+2 | | 2420+230.35x=5463.50 | | 5(x+7)=205 | | 2x-264+2x^2=0 | | 4.23+1=17.8929+x | | -6(x+7)=-5(x-6) | | 10k+2k=48 |

Equations solver categories